
SAMPLE FINAL

A bank database contains information about:

1) Customers

2) Accounts

3) Employees

4) Branches

Customers and Employees are uniquely identified by their TCKimlikNo. No employee is a customer. A
customer is associated with exactly one branch. An employee is also associated with exactly one
branch. Every customer has exactly one customer representative who is an employee of the
associated branch. A bank branch is uniquely identified by its branchNo. Every account has an
accountNo. An account belongs to exactly one branch. Different branches may use the same account
number.

The assumptions regarding the information recorded in the database are:

for each customer his/her TCKimlikNo (Social Security Number), name, branch, customer
representative, phone number and address,

for each employee his/her TCKimlikNo (Social Security Number), name, branch, phone number and
address,

for each branch, its branchNo, address and phone,

for each account, its branchNo, accountNo, owner TCKimlikNo and balance,

a customer may have more than one account, an account may be owned by more than one
customer,

Draw the E/R Diagram for the registrar database system. Indicate keys, many-one relationships,
weak entity sets, and other features of E/R diagrams.

Customers

Branches

Employees

TCKimlikNoname

phone

addr

associated

works for

TCKimlikNo
represented by

name

phone

branchNo

addr

phone

addr

Accounts

accountNobalance

belongs to

owner

Convert the E/R diagram obtained in 1-a) above to the relational data model using the straight

E/R approach. Please do not forget to designate the keys for all the relations you obtain, and

make any required optimizations along the way.

Solution:

1) Customers (TCKimlikNo, name, phone, addr, branchNo, repTCKimlikNo)

// - associated (TCKimlikNo, branchNo) is removed as it is combined with Customers

// - representedBy (custTCKimlikNo, empTCKimlikNo) is removed as it is combined with

Customers

2) Employees (TCKimlikNo, name, phone, addr, branchNo)

// worksFor (TCKimlikNo, branchNo) is removed as it is combined with Employees

3) Branches (branchNo, phone, addr)

4) Accounts (branchNo, accountNo, balance)

5) owner (TCKimlikNo, accountNo)

Given the relational schema R (A, B, C, D, E) with MVDs A→→B,
AB→→C and FDs A→D and AB→E

State whether the given relation R is in 4NF or not. Please
explain why carefully.

Solution:
Examining the right hand sides of the given FDs, ABC is decided
to be a part of every key. ABC+=ABCDE, and hence, is the only
key. The left hand sides of all the MVDs along with the
promoted FDs are readily seen to be not superkeys. As they are
also non-trivial, they all form violations of 4NF.

R(A, B, C, D, E): MVDs: AB, ABC, FDs: AD, ABE

• All 4NF violations?

Keys(s) : ABC is always part of it. As ABC+=ABCDE, ABC is the only key. Both the MVDs as well
as the FDs promoted as MVDs violate 4NF.

• Decompose into 4NF as necessary?

Let us pick AD promoted to start with. We obtain R1(A, D) FD: AD and R2(A, B, C, E) FD:
ABE and MVDs: AB, ABC. R1 is in 4NF while R2 is not.

• Pick ABE promoted to decompose R2:

• R21(A, B, E) FD: ABE, MVD: AB and R22(A, B, C) MVDs: AB, ABC.

• Decomposing on AB in R21; R211(A, B) and R212(A, E) are obtained.

• ABE has been lost or what. Using table test, check AE? Apply AD, AB, ABE in
this order. AE holds and renders the original ABE redundant.

• Moreover R211(A, B) MVD: AB and R212(A, E) FD: AE are then both in 4NF.

9

A B C D E

a b1 c1 d1 e1

a b2 c2 d2=d1 e2=e1

a b2 c1 d1 e1

a b1 c2 d2=d1 e2=e1

• We are to last check R22(A, B, C) with MVDs:

AB, ABC.

• Note that the set of new FDs: AD, AE and

MVD: AB implies AC, which in turn

renders ABC redundant (see the following

slide).

• As AB is a violation, R22 is not in 4NF.

R221(A, B) MVD: AB and

R222(A, C) MVD: AC are obtained.

• As R221 = R211, ignore it.

• R222 is in 4NF.

Given R(A, B, C, D, E): MVDs: AB, ABC, FDs: AD, AE, prove
that AC is valid, which in turn renders ABC redundant.

Proof: Use table test. Goal (a, b1, c2, d1, e1) and (a, b2, c1, d2, e2)

First use AD, AE to show that d2=d1 and e2=e1.

Then use AB to write two more tuples to obtain the goal

10

A B C D E

a b1 c1 d1 e1

a b2 c2 d2=d1 e2=e1

a b2 c1 d1 e1

a b1 c2 d2=d1 e2=e1

Given the database schema:

Product (maker, model, type)

PC (model, speed, ram, hd, price)

Laptop (model, speed, ram, hd, screen, price)

Printer (model, color, type, price)

use Embedded SQL in C to write the following SQL query: Ask the

user for a price, and find the PCs whose price is closest the desired

price. Print the maker, the model number, and the speed of the PC.

void closestMatchPC() {

EXEC SQL BEGIN DECLARE SECTION;

char manf, SQLSTATE[6]; int targetPrice, /* holds price given by user */

float tempSpeed, speedOfClosest; char tempModel[4], modelOfClosest[4]; int tempPrice, priceOfClosest; /* for tuple just read
from PC & closest price found so far */

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE pcCursor CURSOR FOR SELECT model, price, speed FROM PC;

EXEC SQL OPEN pcCursor;

/* ask user for target price and read the answer into variable targetPrice */

/* Initially, the first PC is the closest to the target price. If PC is empty, we cannot answer the question, and so abort. */

EXEC SQL FETCH FROM pcCursor INTO :modelOfClosest, :priceOfClosest, :speedOfClosest; if(NOT_FOUND) /* print message
and exit */ ;

while(1) {

EXEC SQL FETCH pcCursor INTO :tempModel, :tempPrice, :tempSpeed; if(NOT_FOUND) break; if(/*tempPrice closer to
targetPrice than is priceOfClosest */) { modelOfClosest = tempModel; priceOfClosest = tempPrice; speedOfClosest =
tempSpeed; }

}

/* Now, modelOfClosest is the model whose price is closest to target. We must get its manufacturer with a single-row select
*/

EXEC SQL SELECT maker INTO :manf FROM Product WHERE model = :modelOfClosest; printf("manf=%s, model=%d,
speed=%d\n", manf, modelOfClosest, speedOfClosest);

EXEC SQL CLOSE CURSOR pcCursor;

} 13

Given the database schema:

Aircraft (aircraftType, capacity)

Passenger (pID, name, phone)

Flight (flightNo, aircraftType)

Reservation (pID, flightNo),

please state which trigger(s) is (are) needed to ensure that no

reservations will cause an overbooking with regard to the capacity

of the aircraft. You should also write one such trigger, named

capacity_control that checks to see if a reservation causes

overbooking (capacity of the aircraft exceeded) and rejects the

reservation request in such a case. The trigger shall allow the

reservation if the aircraft is not full.

CREATE TRIGGER capacity_control

AFTER INSERT ON Reservation

REFERENCING NEW ROW AS new_tuple

FOR EACH ROW

WHEN (

(SELECT COUNT (*) FROM Reservation WHERE flightNo = new_tuple.flightNo)

>

(SELECT capacity FROM Flight f, Aircraft a WHERE new_tuple.flightNo = f.flightNo

AND f.aircraftType = a.aircraftType)

)

DELETE FROM Reservation

WHERE flightNo = new_tuple.flightNo

AND pID = new_tuple.pID;

Consider the relation JoeSells(beer, price) and the
following two transactions:

T1: BEGIN TRANSACTION

S1: UPDATE JoeSells SET price=(3*price)

WHERE beer=‘Bud’;

S2: UPDATE JoeSells SET price=(3*price)

WHERE beer=‘Coors’;

COMMIT;

T2: BEGIN TRANSACTION

S3: UPDATE JoeSells SET price=(2+price)

WHERE beer=‘Coors’;

S4: UPDATE JoeSells SET price=(2+price)

WHERE beer=‘Bud’;

COMMIT;

JoeSells beer Price

Bud 2

Coors 3

Assume the following committed
table before either transaction
executes:

You should additionally assume that 1) A transaction can see what it has written, even if it is not committed and
2) An update requires reading tuples as well as writing them.
Suppose the statements execute in this order:
S1, S3, S2, T1:COMMIT, S4, T2:COMMIT.
For the following cases, find the final prices of Bud and Coors.

T1 executes with READ UNCOMMITTED and T2 executes with READ COMMITTED. (10 pts.)

Stage T1 sees T2 sees Committed Uncommitted

Initial B=2, C=3 B=2, C=3 B=2, C=3 None

After S1 (1 pt) B=6, C=3 B=2, C=3 B=2, C=3 B=6

After S3 (1 pt) B=6, C=5 B=2, C=5 B=2, C=3 B=6, C=5

After S2 (1 pt) B=6, C=15 B=2, C=5 B=2, C=3 B=6, C=15

After T1 commits B=6, C=15 B=6, C=15 None

After S4 (2 pts) B=8, C=15 B=6, C=15 B=8

After T2 commits B=8, C=15 None

Bud: 8.
Coors: 15.

Both T1 and T2 execute with REPEATABLE READ.

Stage T1 sees T2 sees Committed Uncommitted

Initial B=2, C=3 B=2, C=3 B=2, C=3 None

After S1 (1 pt) B=6, C=3 B=2, C=3 B=2, C=3 B=6

After S3 (1 pt) B=6, C=3 B=2, C=5 B=2, C=3 B=6, C=5

After S2 (1 pt) B=6, C=9 B=2, C=5 B=2, C=3 B=6, C=9

After T1 commits B=2, C=5 B=6, C=9 None

After S4 (2 pts) B=4, C=5 B=6, C=9 B=4, C=5

After T2 commits B=4, C=5 None

Bud: 4.
Coors: 5.

Given the following grant diagram

AP**

BP* DP*

CP*
CP

Write a possible sequence of SQL instructions that
leads to the above diagram. Please, indicate for each
instruction the authorization ID issuing it.

Step By Action

1 A GRANT P TO B WITH GRANT OPTION

2 A GRANT P TO D WITH GRANT OPTION

3 B GRANT P TO C WITH GRANT OPTION

4 C GRANT P TO B WITH GRANT OPTION

5 D GRANT P TO C

