Statics for Engineers Spring 2022-2023 ME 211 & ME 205 Second Midterm Exam

26.05.2023

Name: School Number:

	Q.1(30P)	Q.2(40P)	Q.3(30P)	TOTAL
POINTS				

- 1. (30 POINTS) In the particular position shown, the excavator applies a 20 kN force parallel to the ground. There are two hydraulic cylinders AC to control the arm OAB and a single cylinder DE to control arm EBIF. Draw the necessary Free Body Diagrams for the solution.
 - (a) Determine the force in the hydraulic cylinders AC and the pressure p_{AC} against their pistons, which have an effective diameter of 95 mm.
 - (b) Also determine the force in hydraulic cylinder DE and the pressure p_{DE} against its 105-mm-diameter piston. Neglect the weights of the members compared with the effects of the 20 kN force.

Hint: Recall that force = (pressure)(area).

2. (40 POINTS)

- (a) Draw the shear and moment diagrams for the beam subjected to the combination of distributed and point loads.
- (b) Determine the values of the shear force and bending moment at point C, which lies 3 m to the left of B.

3. (30 POINTS) The coefficient of static friction between wedges B and C is $\mu_s = 0.55$ and between the surfaces of contact B and A and C and D, $\mu'_s = 0.45$. If the spring is compressed 100 mm when in the position shown, determine the smallest force P needed to move wedge C to the left. Neglect the weight of the wedges. Draw the free body diagram of each relevant component properly.

