# SE 113 LAB 10 SAMPLE SOLUTION
# filename: lable@.py

# LAB 10 Question 1-a Starts Here
numbers = dict()
for x in range(1, 31):

numbers[x] = x**2
print(numbers)

print()

# LAB 10 Question 1-a Ends Here

# LAB 10 Question 1-b Starts Here

for key, value in numbers.items():
print(str(key) + ': ' + str(value))

print()

# LAB 10 Question 1-b Ends Here

# LAB 10 Question 1-c Starts Here

sum_of numbers = 0
for key, value in numbers.items():

sum_of numbers = sum_of numbers + value
print('Sum of the numbers in the dictionary is

+ str(sum_of numbers))
print()

# LAB 10 Question 1-c Ends Here

# LAB 10 Question 1-d Starts Here
if 10 in numbers:
del numbers[10]

print(numbers)

# LAB 10 Question 1-d Ends Here

# LAB 10 Question 2 Starts Here

dictionaryl
dictionary2

{'Tony': 41, 'Steve': 39, 'Nat': 35}
{'Tony': 42, 'Clint': 35, 'Thor': 38}

# LAB 10 Question 2-a Starts Here

merged_dictionary = dictionaryl.copy()
merged_dictionary.update(dictionary?2)

print()

print('Name \tAge')
for name, age in merged dictionary.items():
print('{} \t{}'.format(name, age))

print()

# LAB 10 Question 2-a Ends Here

# LAB 10 Question 2-b Starts Here

if "Nat' in merged dictionary:
del merged dictionary['Nat']
print(merged _dictionary)

print()

# LAB 10 Question 2-b Ends Here

# LAB 10 Question 2-c Starts Here

1st = list(merged dictionary.keys())
lst.sort()
for key in 1st:

print(key, merged dictionary[key])

print()

# LAB 10 Question 2-c Ends Here

# LAB 10 Question 2-d Starts Here

largest = None
for itervar in merged dictionary.values():
if largest is None or itervar > largest:
largest = itervar
print(‘'Maximum value:', largest)

smallest = None
for itervar in merged dictionary.values():
if smallest is None or itervar < smallest:
smallest = itervar
print('Minimum value:', smallest)

# Alternative solution without loops

# max_key = max(merged dictionary.keys(), key=(lambda k: merged dictionary[k]))
# min_key = min(merged dictionary.keys(), key=(lambda k: merged dictionary[k]))
# print('Maximum Value:
# print('Minimum Value:

, merged dictionary[max_key])
, merged_dictionary[min_key])

print()

# LAB 10 Question 2-d Ends Here

# LAB 10 TODO@HOME Starts Here

def func(dictionary):
result d = dict()
for v in dictionary.values(): # for each value in the dictionary
keys of v = list()
for key, val in dictionary.items():
if v == val:
keys of v.append(key) # all keys associated to same value are added into a list
result d[v] = keys of v # this list is stored in another dictionary
for k in result d:
if len(result d[k]) > 1:
print('The following keys are mapped to the same value,', k)
print(result d[k])

an alternative way using set data type:
def func(d):
# Create an empty dictionary to check for duplicates.
dict b = {}
# Copy all the elements of input dictionary to dict b but group them with their values.
# That is when dict b is printed, the result will look like the following
# {41: {'Tony', 'Bruce'}, 39: {'Steve'}, 35: {'Clint'}, 38: {'Thor'}}
for key, value in d.items():
dict _b.setdefault(value, set()).add(key)

# The filter() function in Python takes in a function and a list as arguments.
# It allows to filter out all the elements of a sequence, for which the function returns True.
# lambda is an anonymous function here. When the length of k is greater than 1 that means
# there are more than 1 key for the same value and return those keys.

result = filter(lambda k: len(k) > 1, dict b.values())

result = list(result)

# Print the result.

for x in range(len(result)):
print('The following keys have the same value in d:')
print(result[x])

# Calling the function with merged dictionary here.
func(merged dictionary)

# LAB 10 TODO@HOME Ends Here



