EEE 232 Microelectronic Devices and Circuits Final Exam July 3, 2021

100 min

Last Name: First Name: Section: Student No:

Formulas that you might need:

$g_m = rac{I_{CQ}}{V_T}$	$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$	$r_o = \frac{V_A}{I_{CQ}}$	$V_T = 26 mV$

Q1) (30 pts) The turn on voltage of each diode in the circuit below is $V_{\gamma} = 0.7$ V. Determine I_{D1}, I_{D2}, I_{D3}, Va and Vb.

Hint: Make an assumption about the states of each diodes and validate your assumptions.

Q2) (40 pts) In the given circuit below β =125, V_A=200, V_T=26 mV, V_{BE}=0.7 V:

- a) Find *Icq* and *VcEq* and verify any assumption you have made.
- b) Plot the dc and ac load lines.
- c) Draw the AC small signal equivalent circuit.
- d) Calculate the small-signal voltage gain $A_v = \frac{v_o}{v_c}$.
- e) Determine the output resistances R_o .
- f) What is the functionality of C_E ?
- g) What is the role of C_{C1} ?

Q3) (30 pts) Consider the common base amplifier given below. All capacitors are assumed short at the frequencies interest. The transistor parameters for the circuit are β =120, V_A= ∞ , V_T=26 mV, V_{BE}=0.7 V. The circuit parameters are V_{CC}=V_{EE}=3.3 V, R_S=500 Ω , R_L=6k Ω , R_B=100k Ω , R_E=12k Ω , and R_C=12k Ω .

Please verify all your assumptions and calculations.

- a) Determine the small signal transistor parameters $g_m,\,r_\pi\,\text{and}\,r_o$
- b) Determine the overall voltage gain $A_v = \frac{v_o}{v_s}$
- c) Determine the input and output resistances R_{in} .