

İZMİR UNIVERSITY OF ECONOMICS Department of Computer Engineering ETE 232 Microelectronic Circuits and Devices Spring 2011/2012

MIDTERM EXAM II May 12, 2012 120 min

INSTRUCTIONS

- Read all of the instructions and all of the questions before beginning the exam.
- There are 6 questions on this exam, totaling 100 points. The credit for each problem is given to help you allocate your time accordingly.
- Do not spend all your time on one problem and on one part and attempt to solve all of them.
- Calculators are allowed, but borrowing is not allowed.
- Your mobile phones must be turned off during the exam.
- Turn in the entire exam, including this cover sheet.

- You must show your work for all problems to receive full credit; simply providing answers will result in only partial credit, even if the answers are correct.
- Please indicate the number of page where your work is to be continued.
- Put your name on any additional material that you submit.
- Be sure to provide units where necessary.
- Please sign the honor pledge that is provided below.

		Question	Points	Grade
Last Name	:	1	25	
Name	:	2	25	
Section	:	3	25	
Student No	:	4	25	
		TOTAL		

The basic equations of the output characteristics of an NMOS transistor				
V _{GS}	$\mathbf{V}_{\mathbf{DS}}$	I _D		
i) $V_{GS} < V_{Tn}$	_	0		
ii) $V_{GS} > V_{Tn}$	a) $V_{DS} < V_{GS}$ - V_{Tn}	$K_{n}\left[\left(V_{GS}-V_{Tn}\right)V_{DS}-\frac{V_{DS}^{2}}{2}\right]$		
, 05 11	b) V_{GS} - $V_{Tn} \le V_{DS}$	$\frac{1}{2}K_n \left(V_{GS} - V_{Tn}\right)^2$		
where $K_n = K'_n \left(\frac{W}{L}\right)$ and $K'_n = \mu_n C_{ox}$,				

VDD **Circuit Parameters** $V_{DD} = 10 V$ $R_1 = 70 \ k\Omega$ Rout R_{D} $R_2 = 30 \text{ k}\Omega$ R_{in} R_1 C_2 $R_D = 2 k\Omega$ VD $R_L = 6 k\Omega$ C_1 Transistor Parameters R_L VL $V_{Tn} = 1 V$ $R_2 \ge$ VS $K_n = 1 \text{ mA}/V^2$ $V_A = \infty$ 늪 \mathbf{i}_{D} LINEAR SAT (NONSAT) Ix DC load line VDS Vx

Q1. (**25 pts**) Consider the following amplifier. The DC and AC load lines of this amplifier are given below.

- (a) Determine the points V_X and I_X on the DC load line.
- (b) Determine the Q point values V_{DSQ} and I_{DQ} , and locate Q point on DC load line.
- (c) Draw the AC load line. Indicate the x-axis and y-axis intercepts.
- (d) Determine also the point where AC load line passes the LIN-SAT boundary.
- (e) Determine the AC small signal voltage gain $A_V = v_0/v_s$.
- (f) Determine R_{in} and R_{out} .
- (g) Determine the total voltages v_D and v_L if $v_S = 0.1 \sin \omega_0 t$ volt.

Q2. (25 pts) Consider the common drain (source follower) circuit given below.

- a) Determine the quiescent point values V_{DSQ} and I_{DQ} .
- b) Determine the small signal parameters g_m and r_{ds} .
- c) Draw the AC small signal model of the circuit.
- d) Determine the small signal voltage gain $A_V = v_o/v_s$.

+

VCE

Q3. (25 pts) Consider the following BJT bias circuits.

15 V **Transistor Parameters** a) Determine the state of the $\beta = 125$ transistor in each circuit. 4 K $V_{BE(on)} = 0.8 V$ b) Determine the Q point values $V_{CE(SAT)} = 0.2 V$ I_{CQ} and V_{CEQ} . Ic c) Compare the circuits (a) and 320 K (b) in terms of the Q-point $\sqrt{}$ 4 V stability, when β is doubled, i.e., $\beta = 250$. (a) 15 V 15 V 5 V 3 K 3 K 4 K 900 K \sim Ic $I_{C} \\$ 200 K 320 K + Vce VCE -^\/\ ላለለ

1 K

Q4. (25 pts) Consider the common-emitter amplifier given below.

- (a) Determine the Q point values V_{CEQ} and I_{CQ} .
- (b) Determine the AC small signal voltage gain $A_V = v_0/v_s$.
- (c) Draw the DC and AC load lines.
- (d) Determine maximum peak value of the undistorted swing at the output.