İçeriğe atla
0
  • Ana Sayfa
  • Kategoriler
    • All Categories
      • Individual Categories
    • Topluluklar
    • Kulüpler
    • Cafeler
    • Okunmamış 0
    • Kullanıcılar
    • Güncel
    • Popüler
    • IEU GPA Hesaplayıcı
    • IEU Timetable
    • Akademik Takvim
    • Yabancı Diller
    • Midterm Tarihleri
    • Sınav Programı
    • Ana Sayfa
    • Kategoriler
      • All Categories
        • Individual Categories
      • Topluluklar
      • Kulüpler
      • Cafeler
      • 0 Okunmamış 0
      • Kullanıcılar
      • Güncel
      • Popüler
      • IEU GPA Hesaplayıcı
      • IEU Timetable
      • Akademik Takvim
      • Yabancı Diller
      • Midterm Tarihleri
      • Sınav Programı
      Daralt
      Marka Logo

      IEU Forum

      1. IEU Forum
      2. Nowhere Else To Share
      3. Number bases done differently (just something i thought of)

      Number bases done differently (just something i thought of)

      Konu Zamanlandı Sabitlendi Kilitli Taşındı Nowhere Else To Share
      nowhereelsetosh
      2 İleti 2 Yayımlayıcılar 0 Bakış
      • En eskiden en yeniye
      • En yeniden en eskiye
      • En çok oylanan
        Cevap
        • Yeni başlık oluşturarak cevapla
        Cevaplamak için giriş yapın
        Bu başlık silindi. Sadece başlık düzenleme yetkisi olan kullanıcılar görebilir.
        • deltawingdragon@sh.itjust.worksD This user is from outside of this forum
          deltawingdragon@sh.itjust.worksD This user is from outside of this forum
          [email protected]
          yazdı Son düzenleyen:
          #1

          Normally, we use a place-value system. This uses exponentials and multiplication.

          1234
          ^^^^
          ||||
          |||└ 4 * 10^0 = 4
          ||└ 3 * 10^1 = 30
          |└ 2 * 10^2 = 200
          1 * 10^3 = 1000
          
          1000 + 200 + 30 + 4 = 1234
          

          More generally, let d be the value of the digit, and n be the digit's position. So the value of the digit is d * 10^n^ if you're using base 10; or d * B^n^ where B is the base.

          1234
          ^^^^
          ||||
          |||└ d = 4, n = 0
          ||└ d = 3, n = 1
          |└ d = 2, n = 2
          d = 1, n = 3
          

          What I came up with was a base system that was polynomial, and a system that was purely exponential, no multiplication.

          In the polynomial system, each digit is d^n^. We will start n at 1.

          polynomial:
          1234
          ^^^^
          ||||
          |||└ 4^1 = 4 in Place-Value Decimal (PVD)
          ||└ 3^2 = 9 PVD
          |└ 2^3 = 8 PVD
          1^4 = 1 PVD
          
          1234 poly = 1 + 8 + 9 + 4 PVD = 22 PVD
          

          This runs into some weird stuff, for example:

          • Small digits in high positions can have a lower magnitude than large digits in low positions
          • 1 in any place will always equal 1
          • Numbers with differing digits being equal!
          202 poly = 31 poly
          PVD: 2^3 + 2^1 = 3^2 + 1^1
          8 + 2 = 9 + 1 = 10
          

          In the purely exponential system, each digit is n^d^. This is a bit more similar to place value, and it is kind of like a mixed-base system.

          1234
          ^^^^
          ||||
          |||└ 1^4 = 1
          ||└ 2^3 = 8
          |└ 3^2 = 9
          4^1 = 4
          
          1234 exp = 4 + 8 + 9 + 1 PVD = 22 PVD
          

          However it still runs into some of the same problems as the polynomial one.

          • Small digits in high positions can have a lower magnitude than large digits in low positions (especially if the digit is 1)
          • The digit in the ones place will always equal 1
          • Numbers with differing digits can still be equal
          200 exp = 31 exp
          PVD: 3^2 = 2^3 + 1^1
          9 = 8 + 1
          

          So there you have it. Is it useful? Probably not. Is it interesting? Of course!

          S 1 Cevap Son cevap
          0
          • deltawingdragon@sh.itjust.worksD [email protected]

            Normally, we use a place-value system. This uses exponentials and multiplication.

            1234
            ^^^^
            ||||
            |||└ 4 * 10^0 = 4
            ||└ 3 * 10^1 = 30
            |└ 2 * 10^2 = 200
            1 * 10^3 = 1000
            
            1000 + 200 + 30 + 4 = 1234
            

            More generally, let d be the value of the digit, and n be the digit's position. So the value of the digit is d * 10^n^ if you're using base 10; or d * B^n^ where B is the base.

            1234
            ^^^^
            ||||
            |||└ d = 4, n = 0
            ||└ d = 3, n = 1
            |└ d = 2, n = 2
            d = 1, n = 3
            

            What I came up with was a base system that was polynomial, and a system that was purely exponential, no multiplication.

            In the polynomial system, each digit is d^n^. We will start n at 1.

            polynomial:
            1234
            ^^^^
            ||||
            |||└ 4^1 = 4 in Place-Value Decimal (PVD)
            ||└ 3^2 = 9 PVD
            |└ 2^3 = 8 PVD
            1^4 = 1 PVD
            
            1234 poly = 1 + 8 + 9 + 4 PVD = 22 PVD
            

            This runs into some weird stuff, for example:

            • Small digits in high positions can have a lower magnitude than large digits in low positions
            • 1 in any place will always equal 1
            • Numbers with differing digits being equal!
            202 poly = 31 poly
            PVD: 2^3 + 2^1 = 3^2 + 1^1
            8 + 2 = 9 + 1 = 10
            

            In the purely exponential system, each digit is n^d^. This is a bit more similar to place value, and it is kind of like a mixed-base system.

            1234
            ^^^^
            ||||
            |||└ 1^4 = 1
            ||└ 2^3 = 8
            |└ 3^2 = 9
            4^1 = 4
            
            1234 exp = 4 + 8 + 9 + 1 PVD = 22 PVD
            

            However it still runs into some of the same problems as the polynomial one.

            • Small digits in high positions can have a lower magnitude than large digits in low positions (especially if the digit is 1)
            • The digit in the ones place will always equal 1
            • Numbers with differing digits can still be equal
            200 exp = 31 exp
            PVD: 3^2 = 2^3 + 1^1
            9 = 8 + 1
            

            So there you have it. Is it useful? Probably not. Is it interesting? Of course!

            S This user is from outside of this forum
            S This user is from outside of this forum
            [email protected]
            yazdı Son düzenleyen:
            #2

            Did you just recreate binary or am I reading this wrong?

            1 Cevap Son cevap
            0

            Cevap
            • Yeni başlık oluşturarak cevapla
            Cevaplamak için giriş yapın
            • En eskiden en yeniye
            • En yeniden en eskiye
            • En çok oylanan


              Önerilen Başlıklar

              Developed by Enes Uysal & Kadir Ay

              • Giriş

              • Hesabınız yok mu? Kayıt Ol

              • Aramak için giriş yapın veya kaydolun
              Unicourse Banner
              • İlk ileti
                Son ileti